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Abstract

Perovskite solar cells are promising candidates for low-cost and efficient photovoltaic devices. However, the 
experimental design based on trial and error consumes lots of time and money. Machine learning (ML) techniques 
can predict perovskite material design and quickly optimize material fabrication parameters and device structure. 
In this work, we compare machine learning models to predict the power conversion efficiency of perovskite solar 
cells. A 60-point experimental data set with various experimental conditions and device structures are used to 
train and test machine learning (ML) models. We trained each of the five classifiers on the 60 data points using 10-
fold cross-validation. We split each dataset into ten equal-sized folds, trained the classifier on 9 -folds, and tested 
it on the remaining fold. We repeat this process ten times so that each fold is used for testing once. The machine 
learning algorithms or classifiers discussed in this paper include ZeroR, Linear Regression, Gaussian Processes, 
Random Tree and Random Forest. By comparing the performance of five different classifiers on 60 data points 
of perovskite solar cell data, we can better understand which methods are most effective for predicting PCE. 
This article also emphasizes the application of symbolic regression and machine learning to design robust and 
effective halide perovskite materials. Additionally, it acts as a foundation for additional experimental perovskite 
material optimization. This work has been performed using Weka the machine learning software.
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Introduction

Due to their high-power conversion efficiency, low 
material cost, and simplicity of processing, perovskite 
solar cells are a promising class of photovoltaic devices 

that have attracted much attention recently. These cells 
typically consist of a thin film of perovskite material 
sandwiched between two charge-transporting layers and 
electrodes. Under sunlight, the perovskite layer generates 
electron-hole pairs, which can be collected to respective 
electrodes via electron- and hole-transporting layers. 
Despite their potential advantages, perovskite solar cells 
face challenges related to stability and scalability, which 
must be addressed before they can be commercially 
viable. Ongoing research aims to develop new materials 
and fabrication methods to improve perovskite solar cells’ 
performance and reliability.
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Perovskite solar cells (PSCs) have demonstrated 
remarkable efficiency of >25% (1) in recent years, 
surpassing conventional silicon solar cells. However, 
several vital challenges must be addressed before going 
for commercialization. One major obstacle is the absence 
of long-term stability, as PSCs are prone to moisture, 
heat, and light exposure degradation. Additionally, 
PSCs require a high-quality perovskite layer, which can 
be challenging to achieve through scalable fabrication 
methods. Furthermore, there are concerns regarding 
using lead-based perovskite materials, which can pose 
environmental and health hazards. Addressing these 
challenges will require further research and development 
to improve PSCs’ stability, scalability, and sustainability.

Machine learning (ML) has emerged as a powerful tool 
for optimizing perovskite solar cell (PSC) performance. 
By leveraging large datasets and complex models, ML 
algorithms can identify patterns and relationships in PSC 
materials and fabrication processes that are difficult to 
discern through formal experimentation. The machine 
learning methods help researchers to accelerate the work 
progress in the vast parameter space of PSC design and 
fabrication, hence accelerating the discovery of optimal 
PSC configurations. ML has been applied to various PSC 
optimization tasks like material compositions, electronic 
properties, processing conditions, and developing 
new device architectures (2). Furthermore, ML has the 
potential to aid in the development of more durable, 
sustainable PSC materials and processes by enabling 
a more comprehensive understanding of the factors 
that contribute to degradation. Overall, ML holds great 
promise for advancing PSC research and accelerating the 
development of efficient, stable, and scalable PSCs for 
renewable energy applications.

Several machine learning (ML) classifiers have been 
applied in this paper to optimize perovskite solar cells 
(PSCs) such as ZeroR, Linear Regression, Gaussian 
Processes, Random Tree and Random Forest. However, 
one common approach is using regression models, such as 
linear regression or support vector regression, to predict 
the performance of PSCs (3) based on input parameters 
such as precursor concentrations or processing conditions. 
Another technique is Bayesian optimization, which uses 
probabilistic models to identify the most promising 
parameter combinations for PSC fabrication (4). Deep 

learning, a type of ML that uses artificial neural networks, 
has also been applied to PSC optimization tasks, such 
as predicting perovskite crystal structures or optimizing 
device architectures (5). In addition, unsupervised 
learning techniques, such as clustering and principal 
component analysis, have been used to identify patterns 
and relationships in large PSC datasets (6). Overall, the 
diversity of ML techniques applied to PSC optimization 
highlights the versatility of these methods in tackling a 
wide range of materials science challenges.

The work presented in this paper is highly significant 
as it addresses a critical challenge in developing perovskite 
solar cells - the time-consuming and expensive process 
of trial and error for optimizing material fabrication 
parameters and device structure. By leveraging machine 
learning techniques, we have demonstrated a more 
efficient and accurate way of predicting the power 
conversion efficiency of perovskite solar cells. Comparing 
five classifiers based on 60 experimental data points 
provides valuable insights into which methods are most 
effective for predicting PCE. The use of machine learning 
(ML) and symbolic regression models are also highlighted 
for designing durable and high-performance perovskite 
solar cell materials. This research is a vital platform for 
further experimental optimization of perovskite materials, 
potentially accelerating the development of low-cost and 
efficient photovoltaic devices.

Methods

Machine learning classifiers can be used in various 
applications, including analyzing and optimizing 
perovskite solar cells. Perovskite solar cells are a type 
of solar cell that use materials with a perovskite crystal 
structure as the active layer. These solar cells have 
shown great potential due to their high efficiency and low 
production costs. One application of machine learning 
classifiers in perovskite solar cells is to predict the solar 
cell’s performance based on various parameters such as 
the composition of the perovskite layer, the thickness of 
the layers, and the choice of electrode materials. This 
can help researchers optimize the design and fabrication 
of perovskite solar cells, leading to higher efficiency and 
stability. The overall methodology is shown in the figure 
given below in Figure 1.
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Figure 1: Methodology of using classifiers in Machine 
Learning

The first requirement is a dataset with input features 
and corresponding output values to predict power 
conversion efficiency. The input features could include the 
physical properties of the materials used in the conversion 
process, the operating conditions of the conversion system, 
and other relevant variables. The output values would be 
the corresponding power conversion efficiency for each 
set of input features.

Once the dataset is ready, you can train a machine-
learning model using a supervised learning algorithm. 
You would split the dataset into training and testing sets 
and use the training set to train the model, and you would 
then use the testing set to evaluate the accuracy of your 
model. The overall flow chart is shown in figure 1The 
cross-validation, and independent test results serve as the 
primary foundation for the algorithm selection criteria. 
Mean absolute error (MAE), root mean square error 
(RMSE), determination coefficient (R2), and correlation 
coefficient (r) for regression are some of the frequently 
used evaluation metrics. This study evaluated the PCE of 
perovskite solar cells using five different classifiers. The 
classifiers used in this work are ZeroR, Linear Regression, 
Gaussian Processes, Random Tree, and Random Forest. 
This work has been performed using Weka, the machine 
learning software.

(a) ZeroR: ZeroR is a straightforward classification 
algorithm that foretells the most prevalent class from 
the training set of data. In our study, we used ZeroR as 
a baseline model to compare the performance of other 
classifiers. Although ZeroR is a simple algorithm, 
it can be used to determine the accuracy of more 
complex models. ZeroR has been used as a baseline 
model for comparison with other machine learning 
algorithms for predicting the efficiency of perovskite 
solar cells based on various parameters such as the 
device architecture, film thickness, and composition.
(7) However, it is unsuitable for complex datasets 
and may not provide accurate predictions for more 
challenging problems.(8)

(b) Linear Regression: A popular algorithm for modeling 
the linear relationship between the independent 
and dependent variables is linear regression. Linear 
regression assumes a linear relationship between 
the variables and can produce accurate predictions 
when the data follow a linear trend. However, if 
the data is non-linear, linear regression may not be 
the best option.(9) The linear regression model was 
able to accurately predict the efficiency of perovskite 
solar cells based on the molecular descriptors of the 
materials, showing the potential of QSPR models for 
designing and optimizing perovskite solar cells.(10)

(c) Gaussian Processes: Gaussian processes are a 
Bayesian machine learning technique that models the 
distribution of functions over a continuous domain. 
Gaussian processes are flexible and can handle non-
linear data. They can also produce accurate predictions 
with limited data. Gaussian Processes have been used 
as a machine learning algorithm for predicting the 
efficiency of perovskite solar cells based on various 
parameters such as the device architecture, film 
thickness, and composition.(11) However, they can be 
computationally expensive and may not scale well to 
large datasets.(12)

(d) Random Tree: Random Tree is a decision tree-based 
algorithm that constructs multiple decision trees and 
aggregates the results to make predictions. Random 
Tree is a simple and interpretable algorithm that can 
handle both categorical and continuous data. It can also 
handle non-linear relationships between variables. RT 
is being used for predicting the power conversion 
efficiency of perovskite solar cells based on the device 
architecture and composition.(13) However, it may not 
perform well with noisy data.(14)

(e) Random Forest: An ensemble learning algorithm 
called Random Forest (RFs) combines various 
decision trees to produce predictions. Random Forest 
is a highly accurate algorithm that can handle non-
linear relationships between variables, noisy data, 
and missing values. It can also provide estimates of 
feature importance, which can aid in feature selection. 
However, it can be computationally expensive and 
perform poorly with highly imbalanced datasets. 
RFs have been used to predict the efficiency of 
perovskite solar cells based on various parameters 
such as the device architecture, film thickness, and 
composition.(15)
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Results and Discussions

This section will compare the analysis and 
performance of all examined classification algorithms 
using datasets based on perovskite solar cell performance 
parameters. This study uses a dataset of 60 data points 

to evaluate the performance of various classifiers in 
predicting PCE. The dataset was pre-processed and split 
into training and testing sets, and five different algorithms 
(ZeroR, Linear Regression, Gaussian Processes, Random 
Tree, and Random Forest) were used to predict PCE based 
on the values of the independent variables.

Figure 2: Predicted power conversion efficiency using different classifiers (a) Linear Regression (b) ZeroR (c) 
Random Forest (d) Gaussian Processes (e) Random Tree. The machine learning software Weka has been used 

for this work.
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Critical performance metrics such as correlation 
coefficient, mean absolute error, and root means squared 
error was used to compare each classifier’s accuracy 
and reliability. The graphical comparison results of each 
classifier are shown in figure 2. In these graphs, the x-axis 

indicates the actual efficiency, and the y-axis indicates the 
predicted efficiency. The obtained performance results 
using all the classifiers for predicting PCE are presented 
in Table 1.

Table 1: Comparative Analysis of different classifiers used for predicting PCE of perovskite solar cell

ML Classifiers
Correlation 
Coefficient 

(r)

Coefficient of 
determination
(R2) (R2 = r2)

Mean 
Absolute 

Error (MAE)

Root Mean 
Squared Error 

(RMSE)

(Actual 
PCE (%)

Predicted 
PCE (%) Remarks

Linear 
Regression 0.914 0.835 0.849 1.476 23.48 23.027 Good 

correlation

Random Forest 0.916 0.849 0.908 1.449 23.48 22.555 Good 
correlation

Random Tree 0.782 0.611 1.325 2.042 23.48 22.910 Moderate 
correlation

Gaussian 
Processes 0.519 0.269 1.965 2.583 23.48 20.978 Moderate/Less 

Correlation

ZeroR -0.393 0.154 2.628 3.247 23.48 19.192 Less 
correlation

The Correlation coefficient(r) is a statistical parameter 
used to check the relationship between two chosen 
variables(16). The correlation coefficient ranges between -1 
to +1, representing the strength between the two chosen 
variables. A strong relationship is one having the r value 
closer to 1 between the chosen variables, and -1 represents 
the negative relationship between the variables. The r 
values near zero or equal to zero represent no correlation 
between the variables. Here in this work, the Linear 
regression and Random Forest give r values of 0.914 and 
0.916, respectively, and these two represents the excellent 
correlation between predicted PCE and experimental PCE 
of perovskite solar cell. The coefficient of determination(R2) 
is also high for Linear regression and Random Forest, 
i.e., R2 ~0.84. It shows good outcomes between the 
dependent and independent variables. (17) The machine 
learning classifiers Random Tree gives the coefficient of 
correlation(r) and coefficient of determination (R2) values 
of 0.782 and 0.611, respectively. This classifier gives a 
moderate outcome. The Gaussian and ZeroR give either 
less correlation between the chosen variables. Hence 
from table 1.0 above, we can say that linear progression 
and Random Forest algorithms give a good outcome for 
predicting the PCEs of perovskite solar cells.

A standard metric for calculating the average 
discrepancy between predicted and actual values in a 

regression problem is the Mean Absolute Error (MAE). 
The absolute difference between the PCEs’ predicted and 
actual values and the average of these absolute differences 
are used to calculate the MAE. The model makes more 
accurate predictions when the MAE is lower. The Linear 
regression (MAE value ~ 0.849) and Random forest 
(0.908) also give lower values of MAE as compared 
to Random Tree (1.325), Gaussian Processes (1.965), 
and ZeroR(2.628). The MAE values also predicted that 
the linear regression and random forest give the best 
outcome.(18)

A popular metric for assessing the efficacy of 
regression models is the Root Mean Squared Error 
(RMSE). The average squared difference between the 
predicted and actual values is what is measured. Both the 
linear regression and the random forest have RMSE values 
of 1.476 and 1.449, respectively. The model is making 
more accurate predictions when the RMSE is lower. 
The RMSE for others models is given in table 1. This 
comparison can provide insight into whether the model is 
making meaningful predictions or is simply predicting the 
average value. It is worth noting that the RMSE penalizes 
significant errors more than the MAE because of the 
squaring operation, and this means that the RMSE is more 
sensitive to outliers in the data than the MAE.(19)
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Conclusion

Predicting power conversion efficiency using machine 
learning (ML) classifiers is a standard process in renewable 
energy. Several machine learning classifiers can be used to 
make predictions, including random trees, random forests, 
linear regression, gaussian processes, and ZeroR. The study 
investigated the efficacy of various classifiers in predicting 
PCE using a dataset of 60 data points. Our findings indicate 
that the Random Forest and Linear regression algorithm is 
the most accurate and reliable method for predicting PCE, 
outperforming other algorithms such as ZeroR, Gaussian 
Processes, and Random Trees. These results have 
important implications for the field of PCE prediction, as 
an accurate prediction can aid in developing more efficient 
and cost-effective solar cells. Our study highlights the 
potential of machine learning algorithms in predicting 
PCE, and future research could explore the use of larger 
datasets and more advanced algorithms to improve the 
accuracy and reliability of PCE prediction. Overall, the 
results of this study show the potential of machine learning 
algorithms to predict complex scientific phenomena and 
have important implications for creating more sustainable 
and efficient solar cells. The proposed model can help 
predict the power conversion efficiency of perovskite solar 
cells using machine learning without any experimental 
work. Indeed, the performance prediction ability of the 
ML model can be further improved by the selection of 
particular device architecture. The perovskite solar cell 
performance prediction is very complicated because the 
PCEs depend on many factors, such as film morphology, 
interface properties, etc. Therefore, widespread research is 
required to understand the surface properties of perovskite 
films to improve PSCs performance parameters.
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