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Abstract

This research paper examines the impact of the resistive force and equatorial ellipticity of the Earth (EEE) on the 
motion of a geocentric satellite. We express a satellite’s motion in a spherical coordinate system using potential 
of the Earth. We apply an unperturbed solution to simplify and reduce the equations into an ODE of second-
order. After that, we analyze the resonant curves and oscillatory amplitudes using the differential equation’s 
particular solution. We observe that the resonance arises for the frequencies ϑ˙

0 (satellite’s angular velocity) and 
˙γ (rate of change of EEE). Further, we analyze motion of the satellite in the three different cases: (i) ϕ = 0 and b 
= 0, (ii) ϕ = 0 and b 6= 0, and (iii) ϕ = 06 and b 6= 0, with b as a coefficient of resistive force and ϕ as a latitude of 
satellite. Later, we examine the effect of γ, b, and orbital elements on each case’s resonant curves and oscillatory 
amplitudes.

Keywords: Resistive Force, Earth’s equatorial ellipticity (EEE), Resonance, Geocentric satellite, Unperturbed 
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Introduction

In any dynamic system, resonance plays a fundamental 
role between more than one frequency, observing the 
repetition in the geometric configuration of their position 
in the orbits for a short period. The resonance happens 
due to the small integer value of nearly zero of the orbital 
period. Resonance in the satellite’s motion occurs due to 
the effect of tides. Numerous researchers and investigators 

have studied the resonance in the motion of a satellite in a 
solar system. However, they have given less attention to 
the tesseral-harmonic of second-order regarding the EEE 
and resistive force.

The EEE is an essential aspect of the satellite’s 
motion, defined as the angle measured from the satellite’s 
projection to the minor axis of Earth’s equatorial ellipse. 
Resistive force is the vector sum of numerous forces 
whose direction is opposite to the body’s motion which is 
proportional to the velocity of a satellite.

Literature review: We have gone through work done 
by several researchers, and the review of some literature 
related to our work is given as:

Alimov et al.(2001)1 gave the approximate theory 
on the satellite’s motion for resonant and nonresonant 
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points in the spherical coordinate frame. Belyanin and 
Gurfil (2009)2 expressed the motion of geostationary 
satellites. They have examined the effect of a satellite’s 
equinoctial precession and station-keeping requirements 
on the orbital dynamics. Bhatnagar et al.(1990)3 analyzed 
the inplane motion of a satellite for the gravitational 
force of the Moon, Sun, and oblate Earth, including EEE. 
Callegari et al.(2004)4 developed a model of two planets 
near a first-order mean motion resonance for the field of 
the three-body problem. Donald et al.(2013)5 examined 
the orbit’s dynamics around 3:1 resonance in the Moon 
system. Elipe et al.(2012)6 studied the problem using the 
Lyapunov stability method for stationary points towards 
the central body in the absence of resonances and the in-
case of resonances of orders 3 and 4. Frick and Garber 
(1962)7 discussed on perturbations of a synchronous 
Satellite. Marzari et al.(2006)8 studied the stability of 
planetary orbits near the 2:1 mean motion resonance for 
a planetary-mass ratio and orbital parameters. Voyatzis 
et al.(2005)9 analyzed periodic orbits for symmetric and 
non-symmetric in the resonance’s mean motion 1:4, 1:3, 
and 1:2 for the planar circular R3BP. Vrbik (2013)10 

investigated the resonance in the motion of a test particle 
of a planar circular R3BP. Yadav et al.(2021)11 analyzed 
the resonant curves of the geosynchronous satellite 
using the perturbation technique, including the effect of 
EEE and resistive force. Yadav and Aggarwal (2013)12 

examined geocentric satellite resonance occurs due to 
the EEE parameter. Yadav et al.(2014)13 analyzed the 
motion of a geosynchronous satellite. Also, they have 
examined the resonance under the gravity of the Sun, the 
Moon, and the Earth, including EEE. Yadav et al.(2022)14 

analyzed the impact of EEE on the resonant curves using 
an unperturbed solution. Also, they discussed the phase 
portrait of the geocentric satellite under the gravitational 
force of the Earth, the Moon, and the Sun.

Motivation of the problem: We have been motivated 
by the research work done by Yadav and Aggarwal 
(2013)12 on the resonance in the motion of a geocentric 
satellite appearing for the EEE parameter in polar form. 
With the help of Eath’s potential, they have expressed the 
equation of motion of a satellite as

,

They have investigated resonant points for the 

frequencies, the angular velocity ϑ˙ of a geocentric satellite 
around the Earth, and the rate of change of EEE. Also, 
the Brown-Shock method examined the amplitude and 
period of the oscillation at the resonant points. Although, 
they have not shown the EEE on a particular solution to 
the problem and did not show the dynamics of resonant 
curves. We have extended the problem by applying a 
resistive force to the satellite. Also, we seek the effect of 
the resistive force coefficient on the resonant curves and 
orbital elements.

Aim of the paper: In this research work, we 
investigate the impact of resistive force and EEE on 
resonant curves of the geocentric satellite. Also, we 
express the motion’s satellite in a spherical coordinate 
system. Using an unperturbed solution, we reduce the 
system of equations into an ODE of second-order and 
obtain the solution in three different cases (i) when the 
satellite lies on the equatorial plane and the coefficient of 
resistive force is zero, (ii) when the satellite lies on the 
equatorial plane and coefficient of resistive force is non-
zero, (iii) satellite does not lie on the equatorial plane and 
coefficient of resistive force is non-zero. Finally, we show 
the effect of orbital elements and coefficient of resistive on 
the resonant curves.

The present study of geocentric satellites with 
resonance has many applications in several fields such as 
telecommunication, navigation, mass media, meteorology, 
and many others.

This work presents in; Section 2 provides a statement 
and configuration of the problem and expresses the 
satellite’s equations of motion in spherical coordinates 
using the potential of the Earth. In section 3, we carry out 
the solution in three different cases. Subsection 3.1 provides 
a solution for the coefficient of resistive force is zero, and 
the satellite lies on the equatorial plane. Subsection 3.2 
examines the resonant points in the satellite’s motion 
from the established solution. Subsection 3.3 establishes 
a solution when the coefficient of resistive force is non-
zero and the satellite lies on the equatorial plane. Also, we 
analyze the effect of resistive force on resonant curves. In 
subsection 3.4, we discusses about the motion of satellite 
when ϕ 6= 0 and b 6= 0. Section 4 discusses the findings 
and results, and the last section, 5, concludes the results.

Problem statements and equations of motion of 
a geocentric satellite: In this configuration (Fig.1), it 
is assumed that the satellite revolves around the center 
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of Earth. Let ~r be a position vector from the center of 
Earth to the satellite P, and the position of the satellite P is 
defined in the spherical coordinates r, ϑ, and ϕ. Let (X,Y,Z) 
be an initial reference coordinate system with the origin 
at the Earth’s center. The angle γ represents the difference 
between the satellite longitude and the minor axis line, and 
line OA represents the instantaneous position of the minor 
axis of the Earth’s equatorial section.

The equations of motion of a geocentric satellite are 
determined as

, (1a)

, (1b)

, (1c)

where b is coefficient of resistive force per unit 
mass, Ms is mass of satellite, Fr,Fϑ and Fϕ are force 
components in the direction of r, n1, and n2, and ∆ is the 
earth’s gravitational potential, respectively, by using the 
procedure of Frick and Garber (1962)7

, (2)

Figure 1: Configuration of a Geocentric Satellite

where g0 is gravity on the surface of Earth, r is the 
redial distance from the center of the Earth to the satellite, 
J2 is coefficient of oblateness of the Earth, R0 is Earth’s 
mean radius, J2

(2) is coefficient of Earth’s EEE, ϕ is 
latitude of the satellite, ϑ is longitude of the satellite, and 
γ is earth’s EEE parameter. The desired force components 

can be obtained from Eq.(2) as follows

 (3a)

 (3b)

 (3c)

Substituting the expressions  and,  in 
Eqs.(1a), (1b) and (1c), we obtain

 (4b)

 (4c)

There are three cases arise for solution procedure for 
the equations of motion of satellite under the gravitational 
attraction of the Earth:

(i) b = 0 and ϕ = 0.

(ii) b 6= 0 and ϕ = 0.

(iii) b = 06 and ϕ 6= 0.

Method of Analysis

Case I: Solution procedure when ϕ = 0 and b = 0: In 
this case, we assumed that satellite lies on equatorial plane 
and coefficient of resistive force is zero. By substituting ϕ 
= 0 and b = 0 in Eqs.(4a), (4b) and 4c, we get

 (5a)

 (5b)

For the unperturbed system, J2 = 0 and . From 
Eqs. (5a) and (5b), we deduce that

 (6a), (6b)

Now, putting  in Eqs.(6a) and (6b), we get

.

This is second order non-homogeneous equation with 
constant coefficients. Thus, the solution is given by

,
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where Ω and B are integration constants. Hence

,

which is a polar equation of orbit and expressed as the 
equation of a conic section

,

or

, (7)

where ) is semi-latus rectum,
 is eccentricity, a is semi-major axis, and r2ϑ˙ = h 

is angular momentum.

Now, substituting  
and ϑ˙ = hu2 in Eq.(5a), we get

 (8)

Replacing ϑ˙, r by their steady-state values ϑ˙
0 and r0 

in Eq.(8), we obtain

 (9)

We may take ϑ − Ω = ϑ˙
0t, and γ = γt˙ . From Eq.(9), 

we get

 (10)

The resonance in the satellite’s motion occurs due to 
the frequencies ϑ˙

0 and ˙γ. We can find the resonance for 
neglecting the Earth’s secular terms and oblateness J2 in 
the equation (10). So, we obtain

 (11)

Eq.(11) can be simplified as

 (12)

where

A particular solution of Eq.(12) is

up(t) = A1 cos2˙γt + A2 cos(2ϑ˙
0 − 2γ˙)t + A3 cos(ϑ˙

0 − 
2γ˙)t + A4 cos(2ϑ˙

0 + 2γ˙)t + A5 cos(ϑ˙
0 + 2γ˙)t, (13)

where

(14a) (14b) (14c) (14d) (14e)

Eqs.(14a)-(14e) are the oscillatory amplitudes.

Resonance: Resonance in a geocentric satellite’s 
motion occurs due to the commensurablity between the 
frequencies ˙γ, ϑ˙

0 . From the Eqs.(14a), (14b) and (14c), 
we examined that resonance appear in the satellite’s 
motion at three resonant points 2˙γ = ϑ˙

0, 2˙γ = 3ϑ˙
0 and ˙γ 

= ϑ˙
0. Hence, the amplitudes A1 →∞ for 2˙γ ≈ ϑ˙

0, A2 →∞ 
for 2˙γ ≈ 3ϑ˙

0, 2˙γ ≈ ϑ˙
0, and A3 →∞ for ˙γ ≈ ϑ˙

0.

(a)
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(b)

Figure 2: Impact of orbital (e) and ˙γ on oscillatory 
amplitude A1 at a resonant point. 2˙γ = ϑ˙

0.

Case II: Solution procedure when ϕ = 0 and b 6= 0

In this case, we assume that satellite lies on equatorial 
plane and the coefficient of resistive force is non-zero. By 
substituting ϕ = 0 in Eq.(4a), we get

 (15)

On substituting  
and ϑ˙ = hu2 in Eq.(15), we get

 (16)

Replacing r, ϑ˙ by r0, ϑ˙
0, and using the solution (7) in 

Eq. (16), we obtain

 (17)

We assume that ϑ − Ω = ϑ˙
0t and γ = γt, and using these 

values in Eq.(17), we get

 (18)

The resonance appears between the rate of change of 
EEE and angular velocity of the satellite, including the 
coefficient of resistive force. For examining the resonance, 
we are ignoring the secular and oblateness J2 terms in the 
equation (18). So, we can write

 (19)

Eq.(19) can be simplified as

 (20)

A particular solution of Eq.(20) is u(b)p(t) =A1 cos(2˙γt 
− α1) + A2 cos((2ϑ˙

0 − 2γt˙ ) − α2) + A3 cos((ϑ˙
0 − 2γt˙ ) − α3)

+ A4 cos((2ϑ˙
0 + 2γt˙ ) − α4) + A5 cos((ϑ˙

0 + 2γt˙ ) − α5),
 (21)

where

, 
are phase angles, and

 (22a) (22b) (22c) (22d) (22e)

Eqs.(22a)-(22e) are oscillatory amplitudes with 
coefficient of resistive force.
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Figure 3: Effect of b and ˙γ on resonance curve for the oscillatory amplitude A(b)1.

General case: (when ϕ 6= 0 and b 6= 0): In this case, we assume that the satellite does not lie on equatorial plane 
and the coefficient of resistive force is non-zero. Substituting ˙ϕ = 0 in Eqs. (4a) (assuming ϕ is independent of time t and 
constant), we get

(a) Effect of a and ˙γ on A(b)1. (b) Effect of e and ˙γ on A(b)1.

Figure 4: Impact of eccentricity (e), coefficient of resistive force (b) and ˙γ on oscillatory amplitude A(b)1.

 (23)

On substituting  and  in Eq.(23), we get

  (24)
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Replacing r, ϑ˙ by their steady-state values r0 and ϑ˙
0 in Eq.(24), we obtain

 (25)

We may take ϑ = ϑ˙
0t and γ = γt,˙ in Eq. (25). Since we are examining the resonance in the satellite’s motion between 

the rate of change of EEE and angular velocity of the satellite with the coefficient of resistive force and latitude of the 
satellite. To analyze the resonant points, ignoring the secular and oblateness J2 in the equation (25); we get

 (26)

Eq.(26) can be simplified as

 (27)

where 

A particular solution of Eq. (27) is u(ϕ)p(t) = A(ϕ)1 cos(2˙γt − α(ϕ)1) + A(ϕ)2 cos((2ϑ˙0 − 2γt˙ ) − α(ϕ)2) + A(ϕ)3 
cos((ϑ˙0 − 2γt˙ ) − α(ϕ)3) + A(ϕ)4 cos((ϑ˙0 + 2γt˙ ) − α(ϕ)4) + A(ϕ)5 cos((2ϑ˙0 + 2γt˙ ) − α(ϕ)5) (28)

where

,

are phase angles, and

 (29a) (29b) (29c) (29d) (29e)

Eqs. (29a)-(29e) are oscillatory amplitudes with latitude of satellite and resistive force coefficient.
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Conclusion

In this study, we have expressed the equations of 
motion of the satellite in a spherical coordinate system by 
using the Earth’s potential. The unperturbed solution of 
the satellite’s motion has been used to reduce the system 
of equations into a second-order ODE. We obtained the 
solution for the established second-order ODE with the 
three cases: i) b = 0 and ϕ = 0, ii) b 6= 0 and ϕ = 0, and iii) 
b 6= 0 and ϕ 6= 0. The resonances in the satellite’s motion 
have been obtained concerning the frequencies. We have 
shown the effect of EEEP in the motion of the satellite, 
eccentricity (e), semi-major axis (a), and the resistive 
force on the oscillatory amplitudes through the dynamics 
in 2D and 3D as per the suitability.
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