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Abstract
In this manuscript, we have used quintic B-spline functions to get the numerical solutions of the Korteweg-De 
Vries (KdV) equation, which is a nonlinear equation. The functions and their derivatives have been approximated 
using the quintic B-spline function. By using the Thomas algorithm, we obtained the weighting coefficients of 
the differential quadrature method, and the SSP-RK43 scheme has been used to solve differential equations. 
The test problem has been solved numerically to demonstrate the effectiveness and accuracy of the method. 
Numerical solutions have been presented in tables and illustrated graphically.
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polynomial scheme. Abbas and Iqbal8 proposed the cubic 
B-spline method for the numerical solutions of the KdV 
equation. In order to solve the KdV equation, Dereli and 
Dag9 presented the radial basis function. Dag 10 studied 
the KdV equation by using the Taylor–Galerkin finite 
element method. The Least-squares method was used 
by Jacques and Arnaud11 to find the numerical solutions 
of the KdV equation. Gamze and Nurcan12 investigated 
the numerical solutions of the KdV equation using the 
Iterative splitting method. Hao 13 studied the KdV equation 
by using the Galerkin method. The variational iteration 
method was used by Mustafa14 to solve the KdV equation. 
Kong 15 solved the KdV equation using a hybrid numerical 
scheme. Ozis and Ozer16 explored the numerical solutions 
of the KdV equation using the Iterative scheme. The cosine 
expansion-based differential quadrature method was 
proposed by Saka17 to study the KdV equation. Seadawy18 
investigated the KdV equation by using the variational 
approximation method. Shen19 solved the KdV equation 
by the meshless method. A modified tanh–coth method 
was proposed by Wazzan20 to study the KdV equation. 
Zhang and Ping21 used the implicit sixth-order compact 
finite difference scheme for the numerical solutions of the 

Introduction
Consider the Korteweg-de Vries (KdV) equation
  Vt + εVVz + μVzzz = 0 (1.1)
here and are real constants. The KdV equation was 

introduced by Korteweg and de Vries in 18951, which is 
a nonlinear partial differential equation. This equation 
was used to describe many physical phenomena such as 
shallow water waves2, beam propagation3, bubble-liquid 
mixtures4, ion-acoustic waves5, fluid mechanics6, and other 
areas.

The KdV equation has become a very popular research 
topic due to its many applications and occurrences in the 
real world. To obtain the solutions to the KdV equation, 
many researchers have used various techniques. The 
numerical solutions of the KdV equation were discussed 
by Muhammad and Dambaru7 using a modified Bernstein 
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KdV equation. Ozer and Kutluay22 solved the equation by 
using the analytical-numerical method. Mishra 23 proposed 
a new quadrature method to examine the behaviour of 
the KdV equation.

Spline functions are widely utilized to solve initial and 
boundary value problems. The differential quadrature 
method was first introduced by Bellman24 for solving 
partial differential equations. The quintic B-spline method 
was used by Mittal and Arora25 for the numerical solutions 
of the Kuramoto–Sivashinsky equation. Zaki26 used this 
method to solve the Korteweg de–Vries Burgers’ equation. 
Dag and korkmaz27 solved the advection-diffusion 
equations by quartic and quintic B-splines scheme. 
Saka 28 solved the regularized long wave equation by a 
quintic B-spline technique. Mittal and Dahiya29 used this 
method for solving Fisher-Kolmogorov equations. The 
KdVB equation was solved by Bashan 30 using the quintic 
B-splines method.

The main purpose of this article is to find the numerical 
solutions to the kdv equation. The five-banded Thomas 
algorithm has been used to find the weighting coefficients. 
The derivative of an unknown function is expanded to 
obtain a system of ordinary differential equations. The 
system of ordinary differential equations has been solved 
using the SSP-RK43 scheme. This paper is divided into 
the following sections: In Section 2, the Quintic B-spline 
functions have been reproduced. The values of derivatives 
at the nodes have been obtained in this section. We have 
also explained the implementation of the method to the 
KdV equation in this section. In Section 3, the method has 
been applied to the numerical problem. The findings of 
the paper have been summarized in Section 4.

Quintic B-spline function
The domain c ≤ z ≤ d is discretized into a mesh of 

uniform length d = zj+1 – zj, by the nodes zj where j = 0, 1, 

2, …, M such that c = z1 < z2 <, …, zM-1 < zM = d. Let Sn(z) 
be the quintic B-spline function with the nodes at points 
zj. The quintic B-spline basis function at nodes, given by31

here  and  
forms a basis over the region 

Each quintic B-spline encloses six nodes, so that total of 
six quintic B-spline encloses one node. The nonzero values 
of and the first four derivatives at given node points are 
summarized in Table 1. With respect to the variable , the 
approximation to derivatives of is

 (2.2)
here denotes the first order partial derivatives 

weighting coefficients with respect to z. Shu’s recurrence 
formula32 is used to determine the higher order derivatives.

 (2.3)

 

  (2.4)
The partial derivatives weighting coefficients of order 

 and  in the direction of the z-axis are indicated 

here by the  and  . Substitution of each quintic 
B-spline function into the differential quadrature method 
equation (2.2) for a fixed gives

 (2.5)

 and 

Table 1: and its derivatives on nodes.
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Now, we can rewrite the linear system (2.5) in the matrix notation for any  in the interval  as given below:

here  denotes ,  and 

There are N+8 unknowns and N+4 equations in the linear equation system. The number of equations and unknowns 
is equalized by adding four more equations to the system:

Finally, the number of unknowns and equations are equalized and in the form of , here

R1 = 

 

 

We eliminated , , ,  and used the derivatives and values of the quintic B-spline at the nodes to 
obtain a 5-band matrix of the form , which is a system of linear equations. here

, here
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The penta-diagonal Thomas algorithm is used to 
solve the linear system . We obtain the 
approximate partial derivatives of the first order by solving 

and putting the values of , , ..., ,  in 
equation (2.2). For the approximation of higher order 

partial derivatives and to determine , , , we 
used Shu’s recurrence formula.

By substituting the derivatives approximate values 
with respect to z in equation (1.1), we yield the following 
system:

 (2.6)
This system of ordinary differential equations, which 

provides numerical solutions at different time levels, is 
solved by using the SSP-RK43 scheme, which is a time 
stepping and stability preserving method.

Result and Discussion
The accuracy of the proposed method has been 

demonstrated by applying it to a single soliton equation. 
We have computed Maximum absolute error norm as 
follows:

 
Consider the KdV equation with the exact solution 

stated as follows:

 (3.1)

where 3M and  indicate amplitude and velocity 

respectively. We have taken  and 

. The initial condition is obtained from 
the exact solution for the numerical solution of soliton at 
time as

 (3.2)
and the boundary conditions are defined as follows:

For the numerical solution, we use , 
,  and . The error norm 

has been calculated at various time levels and is shown 
in Table 2. The numerical results at various time levels 
with various values of z have been displayed in Table 3 
and represented graphically in Figures 1-3 at  
and 2.5. We can see that as time increases the single 
soliton moves towards the right. We found that the quintic 
B-spline differential quadrature method is giving better 
results. The ability to retain their original sizes and forms 
is one of the characteristics of soliton waves.

Table 2: Maximum absolute errors at various time 
levels
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Table 3: Numerical solutions of single soliton at various time levels

Figure 1. Simulation of single soliton at time t = 0.5

Figure 2. Simulation of single soliton at time t = 1.5
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Figure 3. Simulation of single soliton at time t = 2.5

Ethical Clearance: All research has been conducted 
with an ethic of respect for cultures, communities, the 
individual/person, and independent knowledge.

Source of Funding: There is no source of funding for 
this research work.

Conflict of Interest: The authors declare that they do 
not have any conflict of interest in the current research 
work.

References
1. Korteweg DJ, De Vries G. XLI. On the change of form 

of long waves advancing in a rectangular canal, and 
on a new type of long stationary waves. The London, 
Edinburgh, and Dublin Philosophical Magazine and 
Journal of Science. 1895 May 1;39(240):422-43. 

2. Johnson RS. Shallow water waves on a viscous fluid—
the undular bore. The Physics of Fluids. 1972 Oct 
1;15(10):1693-9. 

3. Rabinovich MI, Trubetskov DI. Introduction to the 
Theory of Oscillations and Waves. 

4. Van Wijngaarden L. On the equations of motion for 
mixtures of liquid and gas bubbles. Journal of fluid 
mechanics. 1968 Sep;33(3):465-74. 

5. Washimi H, Taniuti T. Propagation of ion-acoustic 
solitary waves of small amplitude. Physical Review 
Letters. 1966 Nov 7;17(19):996. 

6. Kawahara T. Oscillatory solitary waves in dispersive 
media. Journal of the physical society of Japan. 1972 
Jan;33(1):260-4. 

7. Bhatta DD, Bhatti MI. Numerical solution of KdV 
equation using modified Bernstein polynomials. 

Applied Mathematics and Computation. 2006 Mar 
15;174(2):1255-68. 

8. Abbas M, Iqbal MK, Zafar B, Zin SB. New cubic b-spline 
approximations for solving non-linear third-order 
korteweg-de vries equation. Indian J. Sci. Technol. 2019 
Feb;12(15):1-9. 

9. Dağ İ, Dereli Y. Numerical solutions of KdV equation 
using radial basis functions. Applied Mathematical 
Modelling. 2008 Apr 1;32(4):535-46. 

10. Canıvar A, Sari M, Dag I. A Taylor–Galerkin finite 
element method for the KdV equation using cubic 
B-splines. Physica B: Condensed Matter. 2010 Aug 
15;405(16):3376-83. 

11. Debussche A, Printems J. Numerical simulation of the 
stochastic Korteweg–de Vries equation. Physica D: 
Nonlinear Phenomena. 1999 Oct 20;134(2):200-26. 

12. Gücüyenen N, Tanoğlu G. On the numerical solution of 
Korteweg–de Vries equation by the iterative splitting 
Method. Applied Mathematics and Computation. 2011 
Oct 1;218(3):777-82. 

13. Hao SY, Xie SS, Yi SC. The Galerkin method for the KdV 
equation using a new basis of smooth piecewise cubic 
polynomials. Applied Mathematics and Computation. 
2012 May 1;218(17):8659-71. 

14. Inc M. Numerical simulation of KdV and mKdV 
equations with initial conditions by the variational 
iteration method. Chaos, Solitons & Fractals. 2007 Nov 
1;34(4):1075-81. 

15. Kong D, Xu Y, Zheng Z. A hybrid numerical method for 
the KdV equation by finite difference and sinc collocation 
method. Applied Mathematics and Computation. 2019 
Aug 15;355:61-72. 



Anisha et.al., International Journal of Convergence in Healthcare, July-December, 2024, Vol. 04, No. 02 |7|

16. Öziş T, Özer S. A simple similarity-transformation-
iterative scheme applied to Korteweg–de Vries 
equation. Applied mathematics and computation. 2006 
Feb 1;173(1):19-32. 

17. Saka B. Cosine expansion-based differential quadrature 
method for numerical solution of the KdV equation. 
Chaos, Solitons & Fractals. 2009 Jun 15;40(5):2181-90. 

18. Seadawy AR. New exact solutions for the KdV equation 
with higher order nonlinearity by using the variational 
method. Computers & Mathematics with Applications. 
2011 Nov 1;62(10):3741-55. 

19. Shen Q. A meshless method of lines for the numerical 
solution of KdV equation using radial basis functions. 
Engineering Analysis with Boundary Elements. 2009 Oct 
1;33(10):1171-80. 

20. Wazzan L. A modified tanh–coth method for solving the 
KdV and the KdV–Burgers’ equations. Communications 
in Nonlinear Science and Numerical Simulation. 2009 
Feb 1;14(2):443-50. 

21. Zhang X, Zhang P. A reduced high-order compact 
finite difference scheme based on proper orthogonal 
decomposition technique for KdV equation. Applied 
Mathematics and Computation. 2018 Dec 15;339:535-
45. 

22. Özer S, Kutluay S. An analytical–numerical method 
for solving the Korteweg–de Vries equation. 
Applied Mathematics and Computation. 2005 May 
25;164(3):789-97. 

23. Mishra S, Arora G, Emadifar H, Sahoo SK, Ghanizadeh 
A. Differential quadrature method to examine the 
dynamical behavior of soliton solutions to the korteweg-
de vries equation. Advances in Mathematical Physics. 
2022 Jul 9;2022. 

24. Bellman R, Kashef BG, Casti J. Differential quadrature: 
a technique for the rapid solution of nonlinear partial 
differential equations. Journal of computational physics. 
1972 Aug 1;10(1):40-52. 

25. Mittal RC, Arora G. Quintic B-spline collocation method 
for numerical solution of the Kuramoto–Sivashinsky 
equation. Communications in Nonlinear Science and 
Numerical Simulation. 2010 Oct 1;15(10):2798-808. 

26. Zaki SI. A quintic B-spline finite elements scheme for 
the KdVB equation. Computer methods in applied 
mechanics and engineering. 2000 Jul 21;188(1-3):121-
34. 

27. Korkmaz A, Dağ I. Quartic and quintic B-spline methods 
for advection–diffusion equation. Applied Mathematics 
and Computation. 2016 Feb 1;274:208-19. 

28. Saka B, Dağ İ, Irk D. Quintic B-spline collocation method 
for numerical solution of the RLW equation. The ANZIAM 
Journal. 2008 Jan;49(3):389-410. 

29. Mittal RC, Dahiya S. A study of quintic B-spline based 
differential quadrature method for a class of semi-linear 
Fisher-Kolmogorov equations. Alexandria Engineering 
Journal. 2016 Sep 1;55(3):2893-9. 

30. Başhan A, Karakoç SB, Geyikli T. Approximation of 
the KdVB equation by the quintic B-spline differential 
quadrature method. 

31. Prenter PM. Splines and variational methods. Courier 
Corporation; 2008. 

32. Shu C. Differential quadrature and its application in 
engineering. Springer Science & Business Media; 2012 
Dec 6.




